

İleri Evre Kalp Yetersizliği: inotrop bağımlı organ disfonksiyonu olan hastaya yaklaşım

Prof Dr Sanem Nalbantgil, FESC, FHFA Ege Üniversitesi Kardiyoloji AD İzmir 2023 Haziran / Bakü

INTERMACS SINIFLAMASI

INTERMACS Profiles

INTERMACS	1	2	3	4	5	6	7
	Kardiyojenik şok	Giderek kötüleşme	Stabil ama inotrop bağımlı	İstirahatte yakınmalar	Egzersiz entoleransı	Egzersiz kısıtlaması	İleri evre KY
	"Umutsuzlar"	"İnotropa rağmen kötüye gidenler"	"İnotrop bağımlı stabiller"	"Bir ayağı lastanede olanlar"	"Eve <u>bağımlılar</u> "	"Zor vürüvenler"	"Belirsizler"
Hastanın tanımı	İnotrop tedavi ve mekanik destek cihazlarına rağmen hayatı tehdit edici organ perfüzyon bozukluğu mevcuttur	İnotrop tedavi ile KB korunsa da, böbrek işlevleri, beslenme ve konjesyon bulgularında ilerleyici kötüleşme mevcuttur	Düşük-orta doz inotrop tedavi ile stabil olmakla birlikte, tedavi kesilmesiyle böbrek işlevleri, beslenme ve konjesyon bulgularında kötüleşme olur	İ lotrop tedaviye ara verilebilse de, tekrarlayan belirti ve bulgularla sık hastaye başvurur	İstirahatte yakınmasız olmakla birlikte, efor yapamaz ve KY belirti ve bulguları kısmen devam etmektedir	Çabuk yorulmakla birlikte, hafif eforu yapabilir ve istirahatte konjesyon bulguları yoktur	Fonksiyonel kapasitesi NYHA III'dür ve yakın zamanda KY bulgı ve belirtileri tekrarlamamıştır
ACC/AHA sınıflaması		Evre D				Evre C	
NYHA sınıflaması ¹	Kardiyoj	enik Šok		Ambulatuvar IV	Ambulatuvar IV	IIIB	IIIA

ISON 2019 - 9734 YEAR 2018 - YOLUME 1 NUMBER 1 APRIL VE 2018 - CIC 1 SAF 1 NISAN

> 'ileri kalp yetersizliği rehberi' TKD Arşivi 2018 suppl

Kardiyojenik Şok

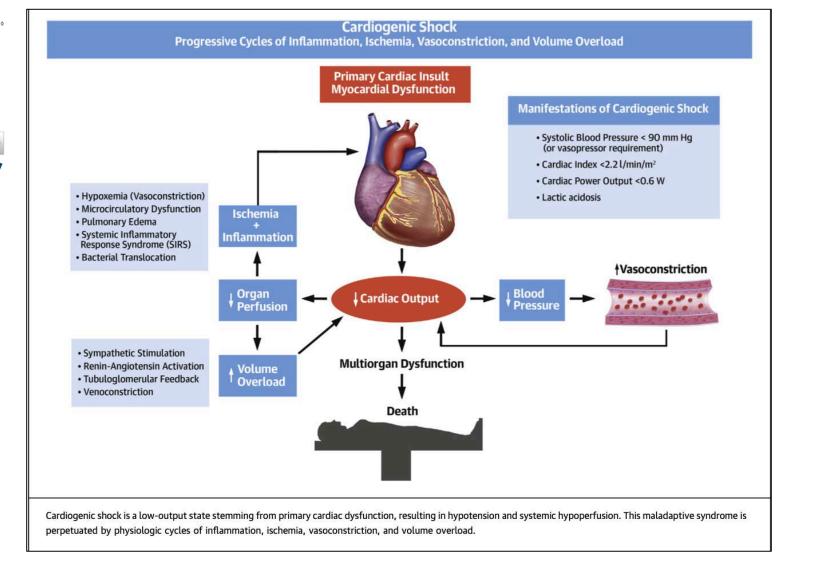
Kardiyojenik şok, yeterli doluş basıncına karşın hipotansiyon (sKB < 90 mmHg) ve hipoperfüzyon bulguları (oliguri, soğuk ekstremiteler, değişen mental durum, laktat > 2 mmol/L, metabolic asidoz, SVo2 < %65) ile karakterize klinik tablodur</p>

Kardiyojenik şok hemodinamik olarak kompleks bir sendrom olup çoğu zaman çoklu organ yetmezliği ile sonuçlanan düşük kardiyak debi ile karakterizedir

Klinik sonlanım kötü olup mortalite %40'l aşmaktadır

Kardiyojenik Şok: patofizyoloji

JACC: HEART FAILURE © 2020 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER VOL. 8, NO. 11, 2020


MINI-FOCUS: HEART FAILURE AND CARDIOGENIC SHOCK

STATE-OF-THE-ART REVIEW

Ę

A Standardized and Comprehensive Approach to the Management of Cardiogenic Shock

Kardiyojenik Şok: tedaviye yaklaşım

- ≻Etiyoloji
- ➢ Fenotipleme
- ≻Evreleme
- ≻Medikal Tedavi
- Mekenik Destek Cihazları

– Tedaviye yaklaşım için önemli

Etiyoloji:

Left ventricular failure

- Acute myocardial infarction
- Hypertrophic obstructive cardiomyopathy
- Myocarditis
- Myocardial contusion
- Peripartum cardiomyopathy
- Post-cardiotomy
- Progressive cardiomyopathy
- Septic cardiomyopathy
- Stress cardiomyopathy (takotsubo)
- Ventricular outflow obstruction

Right ventricular failure

- Acute myocardial infarction
- Myocarditis
- Post-cardiotomy
- Progressive cardiomyopathy
- Pulmonary embolism
- Septic cardiomyopathy
- Worsening pulmonary hypertension

Arrhythmia

- Atrial fibrillation or flutter
- Ventricular tachycardia or fibrillation
- Bradycardia or heart block

Pericardial disease

- Tamponade
- Progressive pericardial constriction

Chemotherapeutic, toxic, metabolic

- Calcium-channel antagonists
- Adrenergic receptor antagonists
- Thyroid disorders

Valvular or mechanical dysfunction

- Aortic regurgitation—acute bacterial endocarditis
- Mechanical valve dysfunction or thrombosis
- Mitral regurgitation—myocardial ischemia or infarction
- Progressive mitral stenosis
- Progressive aortic stenosis
- Ventricular septal defect or free wall rupture

Kardiyojenik Şok Profilleri...

Ē

		Volume Status					
		Dry	Wet				
Warm Peripheral		Vasodilatory shock (not CS) Increased cardiac index, low SVRI, low/ normal PCWP	Mixed CS Low cardiac index, low / normal SVRI, Elevated PCWP				
Perfusion	Cold	Euvolemic CS Low Cardiac index, high SVRI, low / normal PCWP	Classic CS Low cardiac index, High SVRI, Elevated PCWP				

Kardiyojenik Şok Profilleri...

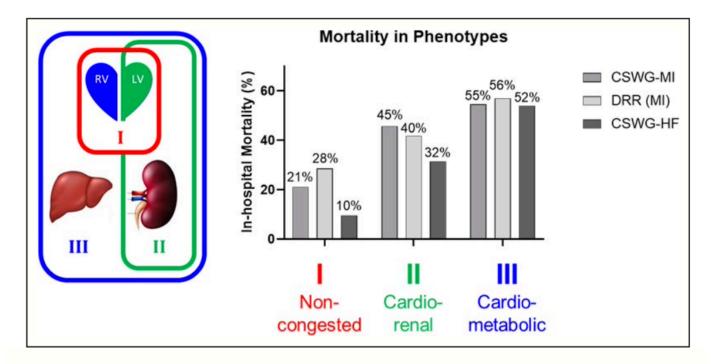
ORIGINAL RESEARCH

Phenotyping Cardiogenic Shock

Elric Zweck ^(b), MD; Katherine L. Thayer ^(b), MPH; Ole K. L. Helgestad ^(b), MD, PhD; Manreet Kanwar ^(b), MD; Mohyee Ayouty, MSc; A. Reshad Garan ^(b), MD; Jaime Hernandez-Montfort ^(b), MD; Claudius Mahr ^(b), MD; Detlef Wencker ^(b), MD; Shashank S. Sinha, MD; Esther Vorovich ^(b), MD; Jacob Abraham, MD; William O'Neill, MD; Song Li ^(b), MD; Gavin W. Hickey ^(b), MD; Jakob Josiassen ^(b), MD; Christian Hassager, MD, DMSci; Lisette O. Jensen ^(b), MD, PhD, DMSci; Lene Holmvang, MD, DMSci; Henrik Schmidt, MD, DMSci; Hanne B. Ravn, MD, PhD, DMSci; Jacob E. Møller, MD, PhD, DMSci; Daniel Burkhoff ^(b), MD, PhD; Navin K. Kapur ^(b), MD 1959 pts

-CSWG registry (MI and acute on cronic HF) -Danish Retroshock MI registry

Characteristics	Cluster/Phenotype I "Noncongested" CS	Cluster/Phenotype II "Cardiorenal" CS	Cluster/Phenotype III "Cardiometabolic" CS
Mean age, y	≈60	≈70	≈65
Comorbidities	Few	DM2, CKD, hypertension	Few
Blood pressure	Ļ	Ļ	ļ†
Congestion	None	Left ventricular	Right ventricular
Heart rate	\leftrightarrow	\leftrightarrow	¢1
Hemoglobin	\leftrightarrow	Ļ	\leftrightarrow
Transaminases	\leftrightarrow	\leftrightarrow	<u></u>
Lactate	↔ or ↑	Ļ	<u></u>
Kidney function	\leftrightarrow	↓↓	Ļ


Table 2. Selection of Outstanding Characteristics of the Phenotypes

CKD indicates chronic kidney disease; CS, cardiogenic shock; and DM2, type 2 diabetes mellitus.

Kardiyojenik Şok Profilleri...

What Is New?

- Using an unbiased machine learning approach, we were able to identify 3 distinct cardiogenic shock (CS) clinical phenotypes ("noncongested," "cardiorenal," and "cardiometabolic" shock) with specific characteristics and associations with outcomes.
- These phenotypes were identified and validated in CS attributable to myocardial infarction as well as acute-on-chronic heart failure in 2 different data sets.
- Our data validate the clinical assumption that hemometabolic shock is associated with a higher mortality and stress the importance of renal function, systemic congestion, and metabolic failure for CS outcomes.

Figure 3. In-hospital mortality in the 3 distinct phenotypes of cardiogenic shock (CS).

Phenotype I (noncongested), phenotype II (cardiorenal), and phenotype III (cardiometabolic) are associated with in-hospital mortality across 2 international multicenter registries of CS attributable to acute myocardial infarction (MI) and a multicenter registry of CS attributable to acute-on-chronic heart failure. CSWG indicates Cardiogenic Shock Working Group Registry; and DRR, Danish Retroshock MI Registry.

Kardiyojenik Şok Evreleri...

 Received: 23 April 2019
 Accepted: 24 April 2019

 DOI: 10.1002/ccd.28329

CLINICAL DECISION MAKING

WILEY

SCAI clinical expert consensus statement on the classification of cardiogenic shock

This document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019

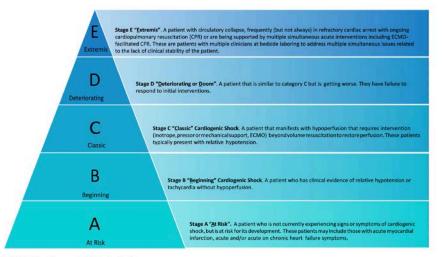


FIGURE 1 The pyramid of CS classification

SCAI SHOCK Stage Classification Expert Consensus Update: A Review and Incorporation of Validation Studies

This statement was endorsed by the American College of Cardiology (ACC), American College of Emergency Physicians (ACEP), American Heart Association (AHA), European Society of Cardiology (ESC) Association for Acute Cardiovascular Care (ACVC), International Society for Heart and Lung Transplantation (ISHLT), Society of Critical Care Medicine (SCCM), and Society of Thoracic Surgeons (STS) in December 2021.

TABLE 1 Characteristics of Studies Validating the Association Between the SCAI SHOCK Stage and Mortality

Study	Years Included Population Design		Patients, n	Primary Outcome	
Schrage et al 2020 ^a	2009-2017	CS or large MI	Retrospective single-center	1007	30-day survival
Baran et al 2020	2019-2020	CS	Prospective single-center	166	30-day survival
Thayer et al 2020	2016-2019	CS	Prospective multicenter ^b	1414	In-hospital mortality
Hanson et al 2020	2016-2019	AMICS	Prospective multicenter ^b	Prospective multicenter ^b 300	
Jentzer et al 2021ª	2007-2015	CS	Retrospective single-center	934	30-day survival
Jentzer et al 2019	2007-2015	CICU	Retrospective single-center	10,004	In-hospital mortality
Lawler et al 2021	2017-2019	CICU or CS	Retrospective multicenter	1991	In-hospital mortality
Jentzer et al 2020	2007-2015	CICU survivors	Retrospective single-center	9096	Postdischarge survival
Pareek et al 2020	2012-2017	OHCA	Retrospective single-center	393	30-day mortality

Duplicate data from the same cohort are not shown. AMICS = CS from acute myocardial infarction; CICU = cardiac intensive care unit; CS = cardiogenic shock; MI = myocardial infarction; OHCA = out-of-hospital cardiac arrest; SCAI = Society for Cardiovascular Angiography and Interventions.

^aPatients with CS from the Schrage 2020 study were included in the Jentzer 2021 study, so only the nonduplicated patients are reported for the Jentzer 2021 study. ^bPatient enrollment in these studies was prospective, but the SCAI SHOCK stage was assigned retrospectively.

JACC 2022:933-946

Kardiyojenik Şok Evreleri...

(A) Modifier: CA with concern for anoxic brain injury

EXTREMIS

A patient with refractory shock or actual/impending circulatory collapse.

DETERIORATING

A patient who has clinical evidence of shock that worsens or fails to improve despite escalation of therapy.

CLASSIC

A patient who has clinical evidence of hypoperfusion that initially requires pharmacologic or mechanical support. Hypotension is usually present.

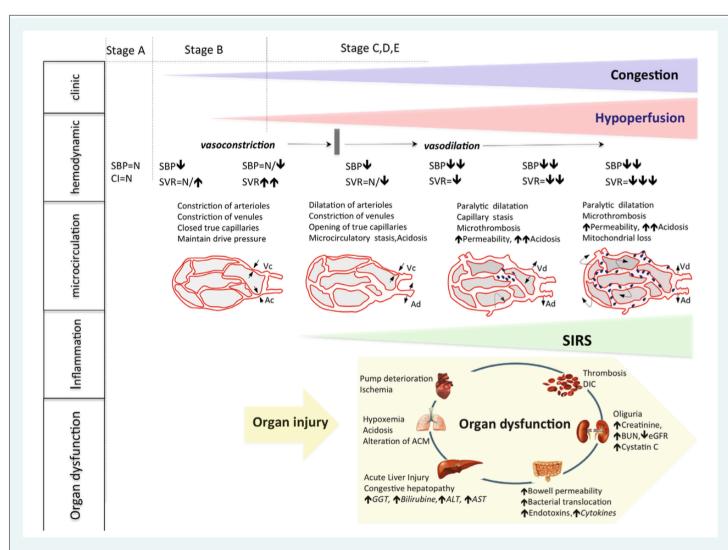
BEGINNING

A patient who has clinical evidence of hemodynamic instability (including hypotension, tachycardia or abnormal systemic hemodynamics) without hypoperfusion.

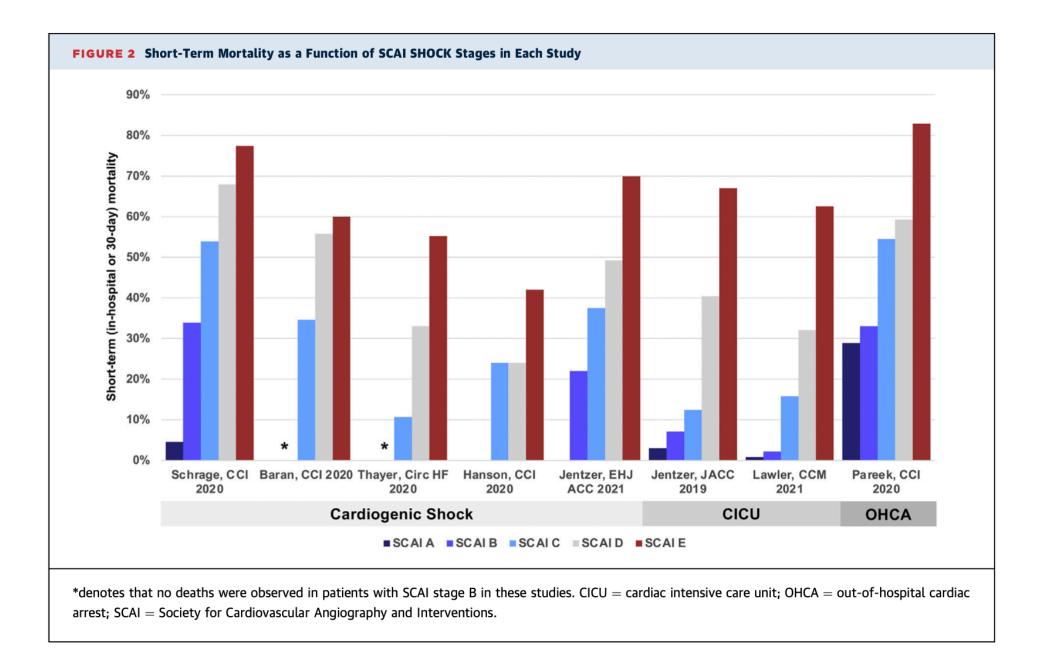
AT RISK

A hemodynamically stable patient who is NOT experiencing signs or symptoms of CS, but is at risk for its development (i.e. large AMI or decompensated HF).

Catheter Cardiovasc Interv 2019;94:29-37 JACC 2022:933-946


Stage	Description	Hemodynamics	Biochemical Markers
A At risk	No signs or symptoms of CS but at risk for CS development. May include patients with large acute myocardial infarction.	Normotensive (SBP \geq 100 or normal for patient) If hemodynamics done: - Cardiac index \geq 2.5 - CVP < 10 - PA sat \geq 65%	Normal labs - Normal renal function - Normal lactic acid
B Beginning CS	$ \begin{array}{lll} \text{SBP} < 90 \text{ or } \text{MAP} < 60 \text{ or } > 30 \\ \text{mmHg drop from baseline.} \\ \text{evidence of relative} \\ \text{sinning CS} \\ \begin{array}{lll} \text{hypotension or tachycardia} \\ \text{without hypoperfusion.} \\ \end{array} \begin{array}{lll} \text{SBP} < 90 \text{ or } \text{MAP} < 60 \text{ or } > 30 \\ \text{mmHg drop from baseline.} \\ \text{- Pulse} \ge 100 \\ \text{- If hemodynamics done} \\ \text{- Cardiac index} \ge 2.2 \\ \text{- PA sat} \ge 65\% \end{array} $		- Normal lactate - Minimal renal function impairment - Elevated BNP
C Classic CS	A patient that manifests with hypoperfusion that requires intervention (inotrope, pressor, or mechanical support, including ECMO) beyond volume resuscitation to restore perfusion. These patients typically present with relative hypotension.	May include any of: SBP <90 or MAP <60 or >30 mmHg drop from baseline and drugs/device used to maintain BP above these targets Hemodynamics: - Cardiac index < 2.2 - PCWP >15 - RAP/PCWP ≥ 0.8 - PAPI < 1.85 - Cardiac power output ≤ 0.6	May include any of the following: - Lactate ≥2 - Creatinine doubling OR >50% drop in GFR - Increased LFTs - Elevated BNP
D Deteriorating	A patient that is similar to category C but is getting worse. They have failure to		Any of Stage C and: Deteriorating
E Extrimis	A patient that is experiencing cardiac arrest with ongoing CPR and/or ECMO being supported by multiple interventions.	No SBP without resuscitation PEA or refractory VT/VF hypotension despite maximal support	"Trying to die" - CPR (A-modifier) - pH ≤7.2 - Lactate ≥5

of Cardiology


European Journal of Heart Failure (2020) 22, 1315–1341 iety doi:10.1002/ejhf.1922

Epidemiology, pathophysiology and contemporary management of cardiogenic shock – a position statement from the Heart Failure Association of the European Society of Cardiology

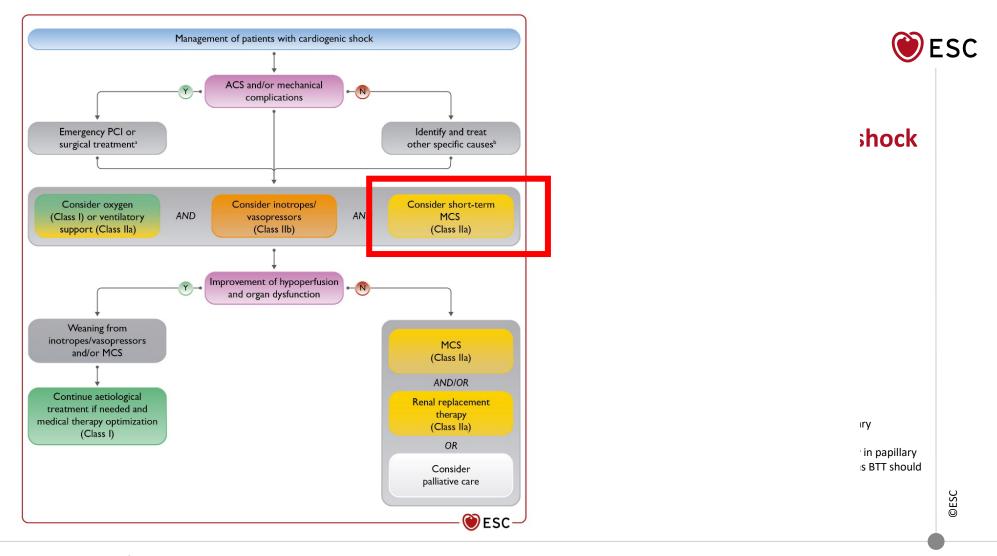


Figure 2 Pathophysiology of cardiogenic shock with staged abnormalities of clinic examination, haemodynamics, microcirculatory dysfunction and organ failure. On the upper row, the SCAI classification is presented. Ac, arteriolar constriction; Ad, arteriolar dilatation; ACM, alveolar-capillary membrane; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; CI, cardiac index; DIC, disseminated intravascular coagulation; eGFR, estimated glomerular filtration rate; GGT, gamma glutamyltransferase; SBP, systolic blood pressure; SIRS, systemic inflammatory response syndrome; SVR, systemic vascular resistance; TMAO, trimethylamine N-oxide; Vc, venous constriction; Vd, venous dilatation.

Kardiyojenik Şok Tedavi...

www.escardio.org/guidelines

Kardiyojenik Şok: medikal tedavi

Ē

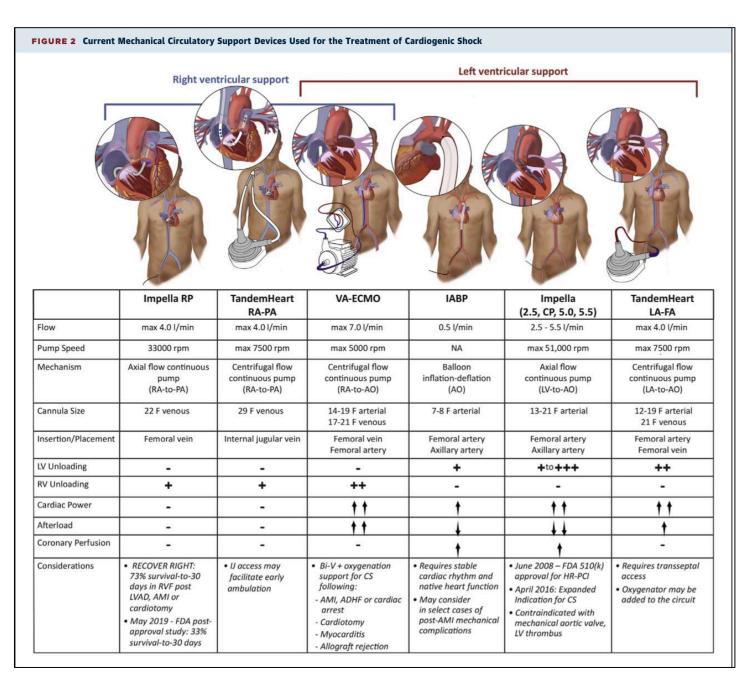
			Hemodynamic					
Medication	Usual Infusion Dose	α ₁	β ₁	β ₂	Dopamine	Effects		
Vasopressor/inotrope	S							
Dopamine	0.5–2 μg⋅kg ⁻¹ ⋅min ⁻¹	-	+	-	+++	↑CO		
	5–10 µg⋅kg ⁻¹ ⋅min ⁻¹	+	+++	+	++	↑↑CO, ↑SVR		
	10–20 μg⋅kg ⁻¹ ⋅min ⁻¹	+++	++	_	++	<mark>↑</mark> ↑SVR, ↑CO		
Norepinephrine	0.05–0.4 μg⋅kg ⁻¹ ⋅min ⁻¹	++++	++	+	-	<mark>↑</mark> ↑SVR, ↑CO		
Epinephrine	0.01–0.5 μg⋅kg ⁻¹ ⋅min ⁻¹	++++	++++	+++	_	↑↑CO, ↑↑SVR		
Phenylephrine	0.1–10 µg⋅kg ⁻¹ ⋅min ⁻¹	+++	-	_	-	↑↑SVR		
Vasopressin	0.02–0.04 U/min	Stimula	ites V ₁ receptors i	n vascular smoo	th muscle	↑↑SVR, ↔PVR		
Inodilators								
Dobutamine	2.5–20 µg⋅kg ⁻¹ ⋅min ⁻¹	+	++++	++	-	↑↑CO, ↓SVR, ↓PVR		
Isoproterenol	2.0–20 μg/min	- ++++		+++	-	↑↑CO, ↓SVR, ↓PVR		
Milrinone	0.125–0.75 μg⋅kg ⁻¹ ⋅min ⁻¹	PD-3 inhibitor				↑CO, ↓SVR, ↓PVR		
Enoximone	2–10 µg⋅kg ⁻¹ ⋅min ⁻¹		PD-3 inhibitor					
Levosimendan	0.05–0.2 µg⋅kg ⁻¹ ⋅min ⁻¹	Му	ofilament Ca ²⁺ sei	nsitizer, PD-3 inh	nibitor	↑CO, ↓SVR, ↓PVR		

Table 4. Mechanism of Action and Hemodynamic Effects of Common Vasoactive Medications in CS

CO indicates cardiac output; CS, cardiogenic shock; PD-3, phosphodiesterase-3; PVR, pulmonary vascular resistance; and SVR, systemic vascular resistance.

Cardiogenic Shock: Short-term MCS

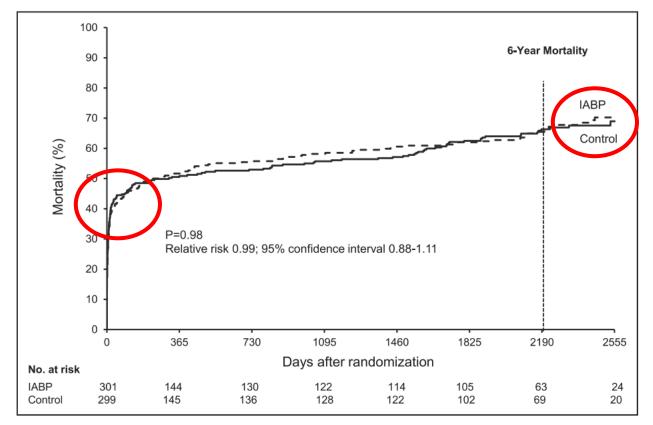
JACC: HEART FAILURE © 2020 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PURILISHED BY FLISEVIER VOL. 8, NO. 11, 2020


MINI-FOCUS: HEART FAILURE AND CARDIOGENIC SHOCK

STATE-OF-THE-ART REVIEW

Ē

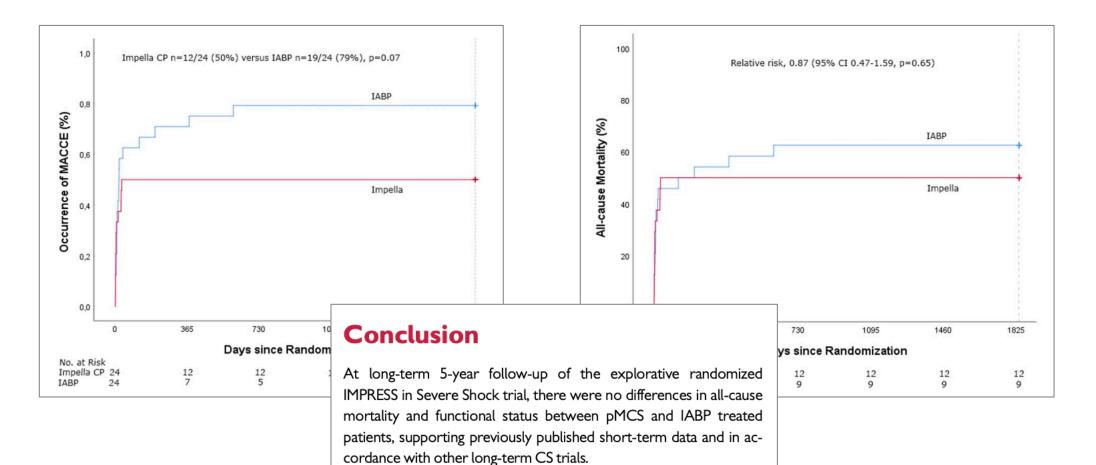
A Standardized and Comprehensive Approach to the Management of Cardiogenic Shock



ORIGINAL RESEARCH ARTICLE

Intraaortic Balloon Pump in Cardiogenic Shock Complicating Acute Myocardial Infarction

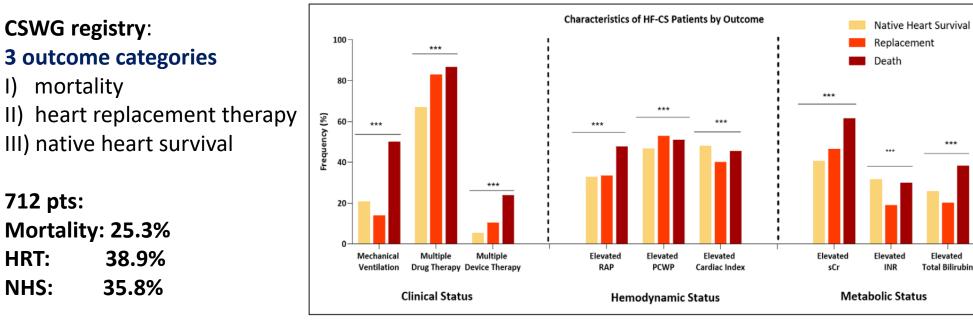
Long-Term 6-Year Outcome of the Randomized IABP-SHOCK II Trial


Figure 2. Time-to-event curves through 6 years.

Time-to-event curves through 6 years for all-cause mortality. *P* value is based on the log-rank test. Event rates represent Kaplan–Meier estimates. IABP indicates intraaortic balloon pump.

European Society of Cardiology bit 10.1003/ehjacc/zuab060 bit 10.1003/ehjacc/zuab060

Long-term 5-year outcome of the randomized IMPRESS in severe shock trial: percutaneous mechanical circulatory support vs. intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction



1)

Circulation: Heart Failure

ORIGINAL ARTICLE

Clinical Outcomes Associated With Acute Mechanical Circulatory Support Utilization in Heart Failure Related Cardiogenic Shock (acute HF on chronic HF)

Figure 1. Clinical, hemodynamic, and metabolic characteristics of patients with cardiogenic shock resulting from decompensated heart failure (HF-CS) by outcome.

Patients experiencing in-hospital mortality were more frequently mechanically ventilated and treated with multiple vasoactive drugs and mechanical support devices than those who survived or went on to replacement therapies (*** P<0.001). INR indicates international normalized ratio; PCWP, pulmonary capillary wedge pressure; RAP, right atrial pressure; and sCr, serum creatinine.

****IABP** was most commonly used

**IABP was most commonly used in pts who underwent HRT

**Pts receiving > 1 MCS had highest in hospital mortality (irrespective of drug therapy)

**ECMO was used in more severe cases of shock (D and E)

**Mortality was highest in ECMO:
ECMO: 54.7%
Impella: 45.3%
IABP: 23%

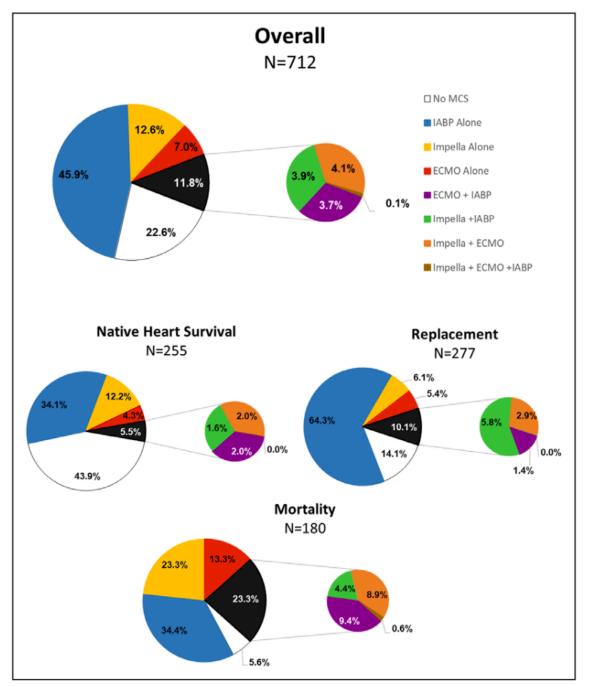


Figure 2. Distribution of acute mechanical circulatory support (AMCS) devices used alone and in combination in the overall study cohort and among patients in each outcome group.

ECMO indicates extracorporeal membrane oxygenation; and IABP, intraaortic balloon pump.

Mortality increased with detoriating stage

- Most common stage was D (63%) > C (22%) > E (8%) > B (6%)
- B: 82.5% survived without HRT 17.5% had HRT no mortality
- C: 53.5% survived without HRT 35.6% had HRT 10.8% died
- D: 26.6% survived without HRT 44% had HRT 29.4% died
- E: 14.5% survived without HRT 30.9% had HRT 54.6% died

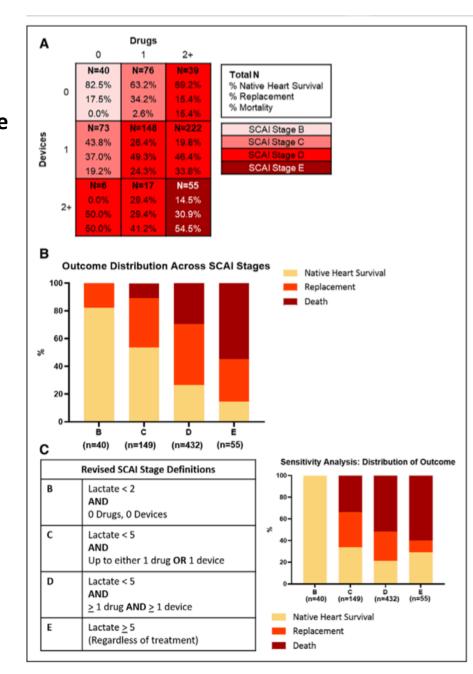
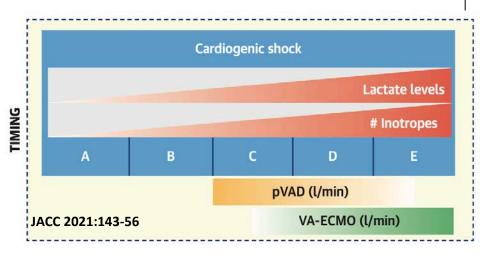


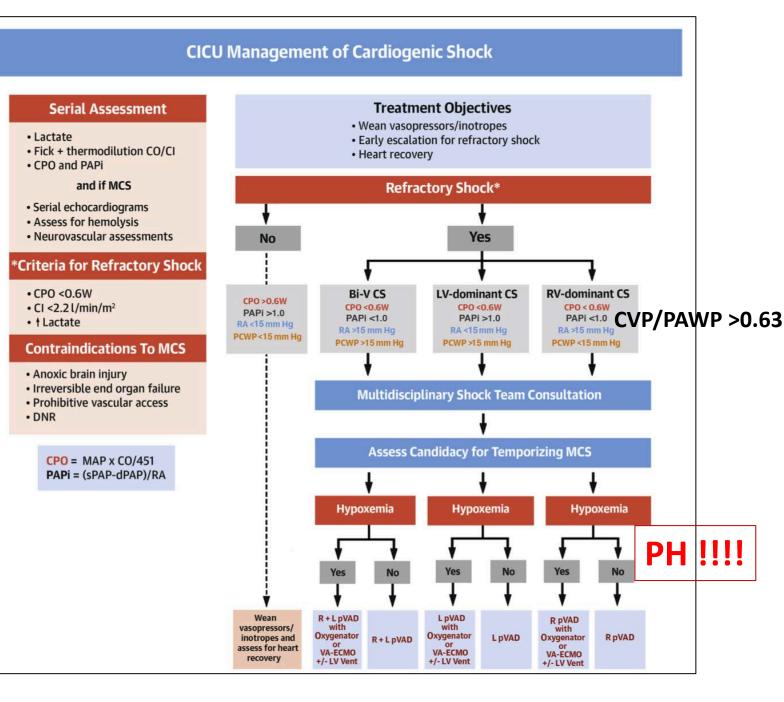
Figure 3. Clinical outcomes according to Society for Cardiovascular Angiography and Intervention (SCAI) stages as defined by the Cardiogenic Shock Working Group (CSWG) according to treatment intensity.

A, Grid analysis of heart failure outcomes by drug and device utilization and CSWG definitions of SCAI stages. **B**, Increasing SCAI stage is associated with increased in-hospital mortality and decreased native heart survival (CSWG definitions of SCAI stages: B: no drugs or acute mechanical circulatory support [AMCS], C: up to 1 drug or 1 device, D: >1 drug OR >1 device, E: >1 drug AND >1 device). **C**, Sensitivity analysis of CSWG definitions of SCAI stages including lactate cutoffs. Circulation: Heart Failure

ORIGINAL ARTICLE

Clinical Outcomes Associated With Acute Mechanical Circulatory Support Utilization in Heart Failure Related Cardiogenic Shock

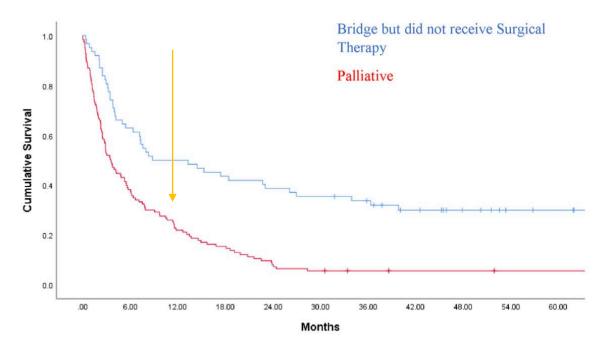

Highest RAP and heart rate and lowest BP were associatest with mortality


- > Biventricular failure common in pts who died and isolated LV failure common in pts who had HRT
- > Lactate, BUN, serum creatinine and aspartate aminotransferase were highest in pts who died
- > In-hospital mortality was associated with biventricular congestion and end-organ hypoperfusion
- > The study does not clarify whether IABP use was effective or whether one device is more effective

It is not the device used, but the STAGE & PHENOTYPE of shock that is associated with mortality

Cardiogenic Shock: Short-term MCS

LV dominant RV dominant Biventrikülar tutulum



Chronic Intravenous Inotropic Support as Palliative Therapy and Bridge Therapy for Patients With Advanced Heart Failure: A Single-Center Experience

ANIRUDH RAO, MD,^{1,2} KELLEY M. ANDERSON, PhD,³ SELMA MOHAMMED, MD, PhD,⁴ MARK HOFMEYER, MD,⁵ SHERRY S. GHOLAMI, BS,¹ FAROOQ H. SHEIKH, MD,⁵ MARIA E. RODRIGO, MD,⁵ NANCY A. CROWELL, PhD,³ HASAN JAVED, MD,⁵ SHANTAL GUPTA, MD,⁵ SAID HAJOULI, MD,⁶ DIANA E. STEWART, PharmD,⁷ AHMAD HAMAD, MD,⁸ SAMER S. NAJJAR, MD,⁵ AND HUNTER GRONINGER, MD^{1,2}


Washington, DC; Omaha, Nebraska; Logan, West Virginia; Buffalo, New York; and Columbus, Ohio

Number at risk											
Months	0	6	12	18	24	30	36	42	48	54	60
Bridge	63	39	31	27	24	20	16	9	5	4	2
Palliative	123	47	27	19	10	4	4	4	4	4	3

INOTROP TEDAVI...

INOTROP TEDAVIDE ORTALAMA SAĞ KALIM = 9 AY

9-month survival is in patients on inotropes who did not receive a transplant or left ventricular assist device

Hashim et al. Clinical Characteristics and Outcomes of Intravenous Inotropic Therapy in Advanced Heart Failure . Circ Heart Fail. 2015;8:880-886

ORIGINAL

Causes and predictors of early mortality in patients treated with left ventricular assist device implantation in the European Registry of Mechanical Circulatory Support (EUROMACS)

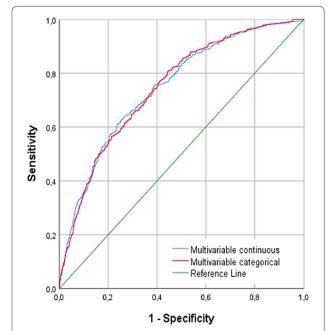

Sakir Akin^{1,2}, Osama Soliman³, Theo M. M. H. de By⁴, Rahatullah Muslem¹, Jan G. P. Tijssen^{5,6}, Felix Schoenrath⁷, Bart Meyns⁸, Jan F. Gummert⁹, Paul Mohacsi¹⁰ and Kadir Caliskan^{1*}^{1*} on behalf of the EUROMACS investigators

Table 3 Baseline multivariate predictors of early mortalityafter LVAD implantation using continuous values

	Variables	OR	95.0% CI for OR	<i>p</i> value
	Age (years)	1.028	1.018-1.038	0.000
	Gender (female)	1.339	1.003-1.788	0.048
	INTERMACS Class 1–3	1.5	1.121-2.007	0.006
	ECMO	1.989	1.431-2.765	0.000
*	Creatinine µmol/L	1.003	1.002-1.005	0.000
*	Total bilirubin g/dL	1.193	1.116-1.275	0.000
	Lactate mmol/L	1.011	1.003-1.019	0.008
	Hemoglobin g/dL	0.908	0.858-0.961	0.001
*	RA/PCWP	1.74	1.292-2.344	0.000
	PVR woods unit	1.089	1.044–1.135	0.000
	SVR woods unit	0.974	0.957-0.992	0.004
	Total implantation time (min)	1.003	1.002-1.004	0.000

For abbreviations, see Table 1

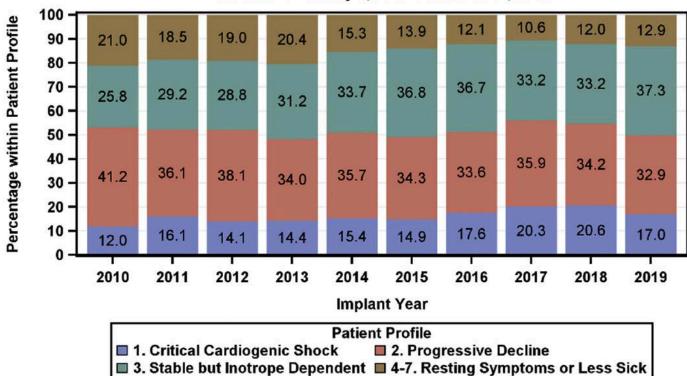
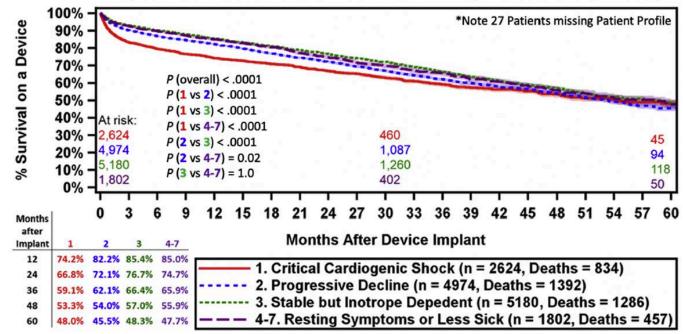

[16]. Furthermore, patients with pre-operative impaired renal and hepatic function, or prolonged peripheral tissue hypoxia (lactate) have increased early mortality following LVAD implantation. We believe that proper timing of LVAD, earlier in the process of end-stage heart failure, before a full-blown cardiogenic shock, is critical in achieving a good survival chance. Furthermore,

Fig. 3 Comparison of goodness of fit between the multivariable models using continuous versus categorical values. Receiver-operating characteristic curves showing similar area under the curve of the two models in predicting early (< 90 day) death following LVAD implantation

The Society of Thoracic Surgeons Intermacs 2020 Annual Report

Ezequiel J. Molina, MD, Palak Shah, MD, MS, Michael S. Kiernan, MD, MS, William K. Comwell III, MD, MSCS, Hannah Copeland, MD, Koji Takeda, MD, PhD, Felix G. Fernandez, MD, Vinay Badhwar, MD, Robert H. Habib, PhD, Jeffrey P. Jacobs, MD, Devin Koehl, MSDS, James K. Kirklin, MD, Francis D. Pagani, MD, PhD, and Jennifer A. Cowger, MD, MS



Patient Profile for Primary Continuous Flow LVAD (n=25,472) Intermacs: January 1, 2010-December 31, 2019

profiles 4-7 were less common in the more recent era

The Society of Thoracic Surgeons Intermacs (B) Check for updates 2020 Annual Report

Ezequiel J. Molina, MD, Palak Shah, MD, MS, Michael S. Kiernan, MD, MS, William K. Comwell III, MD, MSCS, Hannah Copeland, MD, Koji Takeda, MD, PhD, Felix G. Fernandez, MD, Vinay Badhwar, MD, Robert H. Habib, PhD, Jeffrey P. Jacobs, MD, Devin Koehl, MSDS, James K. Kirklin, MD, Francis D. Pagani, MD, PhD, and Jennifer A. Cowger, MD, MS

Kaplan-Meier Survival for Continuous Flow LVAD by Era 2015-2019 (n=14,580)

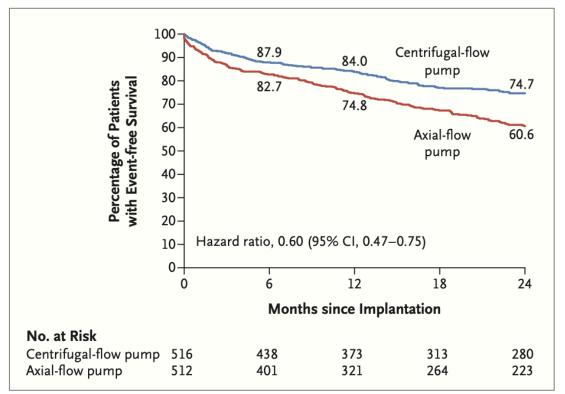
Shaded areas indicate 70% confidence limits

p (log-rank) = <.0001

Event: Death (censored at transplant or cessation of support)

survival is improving over time with all intermacs profiles survival curves overlap for profile 3 and 4-7

The NEW ENGLAND JOURNAL of MEDICINE

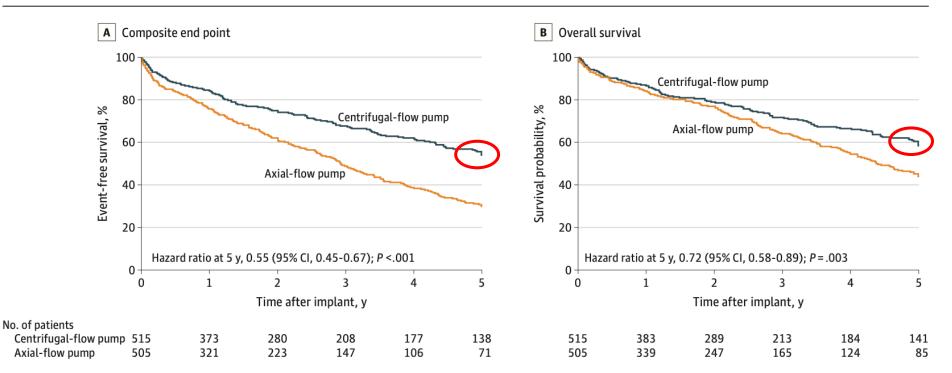


ORIGINAL ARTICLE

A Fully Magnetically Levitated Left Ventricular Assist Device — Final Report

M.R. Mehra, N. Uriel, Y. Naka, J.C. Cleveland, Jr., M. Yuzefpolskaya, C.T. Salerno, M.N. Walsh, C.A. Milano, C.B. Patel, S.W. Hutchins, J. Ransom, G.A. Ewald,
A. Itoh, N.Y. Raval, S.C. Silvestry, R. Cogswell, R. John, A. Bhimaraj, B.A. Bruckner, B.D. Lowes, J.Y. Um, V. Jeevanandam, G. Sayer, A.A. Mangi, E.J. Molina, F. Sheikh, K. Aaronson, F.D. Pagani, W.G. Cotts, A.J. Tatooles, A. Babu,
D. Chomsky, J.N. Katz, P.B. Tessmann, D. Dean, A. Krishnamoorthy, J. Chuang,
I. Topuria, P. Sood, and D.J. Goldstein, for the MOMENTUM 3 Investigators*

Pr-endpoint: survival free of of disabling stroke or reopeartion to replace / remove a malfunctionin device


JAMA | Original Investigation

Five-Year Outcomes in Patients With Fully Magnetically Levitated vs Axial-Flow Left Ventricular Assist Devices in the MOMENTUM 3 Randomized Trial

Mandeep R. Mehra, MD, MSc; Daniel J. Goldstein, MD; Joseph C. Cleveland, MD; Jennifer A. Cowger, MD, MS; Shelley Hall, MD; Christopher T. Salerno, MD; Yoshifumi Naka, MD, PhD; Douglas Horstmanshof, MD; Joyce Chuang, PhD; AiJia Wang, MPH; Nir Uriel, MD, MSc

2022

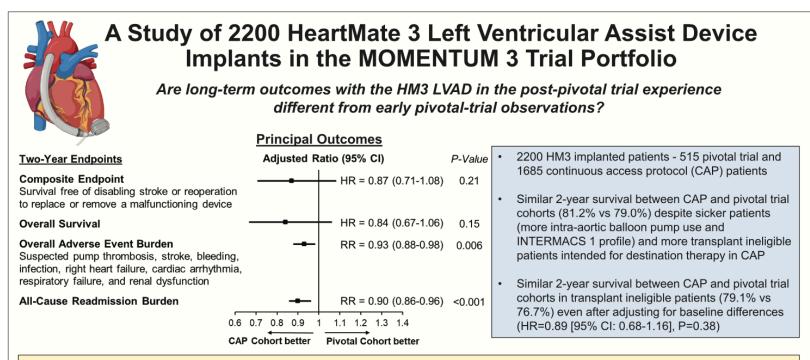
Figure 2. Composite End Point and Overall Survival in a Study of 5-Year Outcomes in Patients With Fully Magnetically Levitated vs Axial-Flow Left Ventricular Assist Devices (LVADs)

Figure 3. Serious Adverse Events in a Study of 5-Year Outcomes in Patients With Fully Magnetically Levitated vs Axial-Flow Left Ventricular Assist Devices

	Events/patient-years					
Serious adverse event	Centrifugal-flow pump (515 patients; 1234 patient-years)	Axial-flow pump (505 patients; 997 patient-years)	Rate ratio (95% CI)	Favors centrifugal-flow pump	Favors axial-flow pump	P value ^a
Any bleeding	0.430	0.765	0.56 (0.50-0.63)	-		<.001
Gastrointestinal bleeding	0.252	0.423	0.60 (0.51-0.69)	-8-		<.001
Any stroke	0.050	0.136	0.37 (0.27-0.50)			<.001
Suspected or confirmed pump thrombosis	0.010	0.108	0.09 (0.05-0.16)	_		<.001
Any major infection	0.515	0.551	0.94 (0.83-1.05)	-	-	.25
Cardiac arrhythmia	0.207	0.283	0.73 (0.62-0.87)	-		<.001
Right heart failure	0.149	0.146	1.02 (0.82-1.27)	-	-	.87
Other neurologic event ^b	0.073	0.065	1.12 (0.81-1.54)	_	-	.49
			C	0.05 0.1	L 4	Ļ
				Rate ratio (95% (CI)	

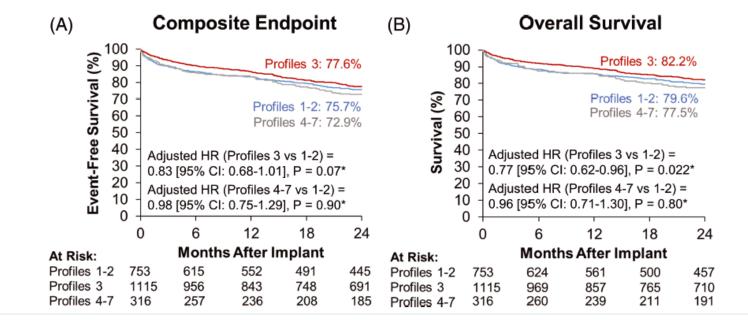
adverse events

	No. (%)				Favors	Favors	
Cause of death	Centrifugal-flow pump (n = 515)	Axial-flow pump (n = 505)	Difference, % (95% CI) % ^a	Hazard ratio (95% CI)	centrifugal-flow pump	axial-flow pump	P value ^b
Hemocompatibility-related event (device thrombosis, stroke, bleeding)	20 (3.9)	54 (10.7)	-6.8 (-10.0 to -3.6)	0.33 (0.20-0.55) —			<.001
Heart failure	47 (9.1)	43 (8.5)	0.6 (-2.9 to 4.1)	1.01 (0.67-1.53)			.95
Infection	26 (5.0)	26 (5.1)	-0.1 (-2.8 to 2.6)	0.92 (0.54-1.59)			.77
Other ^c	63 (12.2)	61 (12.1)	0.0 (-4.1 to 4.0)	0.94 (0.66-1.33)			.72
				Γ		, 	
				0.2		1 2	
					Hazard ratio (95%)	CI)	


death

European Journal of Heart Failure (2021) 23, 1392–1400 ciety doi:10.1002/eihf.2211

Primary results of long-term outcomes in the MOMENTUM 3 pivotal trial and continued access protocol study phase: a study of 2200 HeartMate 3 left ventricular assist device implants


Accumulating post-pivotal trial experience with the HM3 LVAD suggests a lower adverse event burden, reduced hospitalizations and similar survival free of disabling stroke or reoperation to replace or remove a malfunctioning pump as compared to the pivotal MOMENTUM 3 trial outcomes at 2 years

These beneficial outcomes were noted across the continuum of clinical severity in advanced heart failure and especially among transplant ineligible patients in whom outcomes may now compare favorably with those in transplant eligible patients at 2 years

Primary results of long-term outcomes in the MOMENTUM 3 pivotal trial and continued access protocol study phase: a study of 2200 HeartMate 3 left ventricular assist device implants

INTERMACS profile			p-value
1	11 (2.1%)	69 (4.1%)	0.036
2	156 (30.4%)	517 (31.0%)	0.79
3	272 (52.9%)	843 (50.5%)	0.33
4–7	75 (14.6%)	241 (14.3%)	0.88

